Metabolic response to human growth hormone during prolonged starvation.
نویسندگان
چکیده
The metabolic response to human growth hormone (HGH) was studied in five obese subjects in the fed state and during prolonged (5-6 wk) starvation. In the fed state (three subjects), HGH induced an elevation in basal serum insulin concentration, a minimal increase in blood and urine ketone levels, and a marked reduction in urinary nitrogen and potassium excretion resulting in positive nitrogen and potassium balance. In prolonged fasting (four subjects), HGH administration resulted in a 2- to 3-fold increase in serum insulin which preceded a 50% elevation in blood glucose. Persistence of the lipolytic effects of HGH was indicated by a rise in free fatty acids and glycerol. The response differed markedly from the fed state in that blood beta-hydroxybutyrate and acetoacetate levels rose by 20-40%, resulting in total blood ketone acid concentrations of 10-12 mmoles/liter, ketonuria of 150-320 mmoles/day, and increased urinary potassium loss. The subjects complained of nausea, vomiting, weakness, and myalgias. Despite a 50% reduction in urea excretion during HGH administration, total nitrogen loss remained unchanged as urinary ammonia excretion rose by 50% and correlated directly with the degree of ketonuria. It is concluded that in prolonged starvation (a) HGH may have a direct insulinotropic effect on the beta cell independent of alterations in blood glucose concentration, (b) persistence of the lipolytic action of HGH results in severe exaggeration of starvation ketosis and interferes with its anticatabolic action by necessitating increased urinary ammonia loss, and (c) failure of HGH to reduce net protein catabolism in starvation suggests that this hormone does not have a prime regulatory role in conserving body protein stores during prolonged fasting.
منابع مشابه
Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect
Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...
متن کاملButyrate Increases Intracellular Calcium Levels and Enhances Growth Hormone Release from Rat Anterior Pituitary Cells via the G-Protein-Coupled Receptors GPR41 and 43
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting hav...
متن کاملHuman Lung Carcinoma Reaction against Metabolic Serum Deficiency Stress
Cancer treatment is still of the greatest challenges that health care providers and patients are facing. One of the unsolved problems in cancer treatment is cells’ reaction to metabolic stress caused by harsh nutritional conditions around tumor. In order to be able to treat this disease properly, it is important to understand the true nature of the disease. In fact, the cells inside the central...
متن کاملActivating transcription factor 4-dependent induction of FGF21 during amino acid deprivation.
Nutrient deprivation or starvation frequently correlates with amino acid limitation. Amino acid starvation initiates a signal transduction cascade starting with the activation of the kinase GCN2 (general control non-derepressible 2) phosphorylation of eIF2 (eukaryotic initiation factor 2), global protein synthesis reduction and increased ATF4 (activating transcription factor 4). ATF4 modulates ...
متن کاملHuman Lung Carcinoma Reaction against Metabolic Serum Deficiency Stress
Cancer treatment is still of the greatest challenges that health care providers and patients are facing. One of the unsolved problems in cancer treatment is cells’ reaction to metabolic stress caused by harsh nutritional conditions around tumor. In order to be able to treat this disease properly, it is important to understand the true nature of the disease. In fact, the cells inside the central...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 50 2 شماره
صفحات -
تاریخ انتشار 1971